Feeds:
Inlägg
Kommentarer

Posts Tagged ‘koldioxid’

Här kommer ett fint vykort från Askölaboratoriet, fältstation vid Stockholms universitets Östersjöcentrum. Forskaren Florian Roth berättar i en kort film om hur växthusgaser, metan och koldioxid inte bara läpps ut genom olika mänskliga aktiviteter, som flyg och biltrafik, utan också från grunda områden i Östersjöns skärgårdar. Hans forskning fokuserar på att undersöka om Östersjöns grunda miljöer kan vara speciella ”hot spots”för produktionen av metan och koldioxid.

1 Forskning om växthusgaser 20200515

När vi tar oss ut i vattnet iförda vadarbyxor såhär års och står där och trampar på en mjuk sedimentbotten med mycket organiskt material kanske det stiger upp små bubblor från botten. Det är troligen metangas som produceras när bakterier bryter ner det organiska materialet, tillsammans med havsborstmaskar och musslor som också lever nere i bottensedimentet.

2.1 utsläpp från bottenmiljön

Enter Figuren visar hur mycket mer en botten med ett rikt djurliv producerar av metangas än en djup Östersjöbotten där djuren saknas på grund av av syrebrist. Bilden är från artikeln ”Methane fluxes from coastal sediments are enhanced by macrofauna” som publicerats i Scientific Reports volume 7 (artikel nummer 13145) 2017.

Frisättning av metan från sediment varierar mycket beroende på årstid. De högsta utsläppen sker först under våren och sedan igen på sensommaren och beror delvis på förändringar i tillväxt och på temperatur i vattnet och i sedimentet. Utsläppen av metan ökar och är större inom intervallet 10–16 ° C och är lägre vid låga vintertemperaturer i sedimentet, dvs mellan 4–9 ° C.  Detta skulle kunna hänga samman med lägre biologisk aktivitet, både av djur som lever nere i sedimentet och bakteriernas aktivitet att bryta ner organiskt material. Men om vintern varar länge och den grunda viken täcks av is kan metangasen ansamlas under isen. Knackar man hål på isen så kan metangas slippa ut och den är lättantändlig!

På fältstationen ute på Askö finns utmärkta förutsättningar för att undersöka produktionen av växthusgaser i olika miljöer under året.

Här kommer husbåten till god användning. Där kan utrustningen som samlar in vattnet för analys placeras ovanför botten och analysutrustningen stå skyddad inne i det lilla huset. Det känns lyxigt som fältbiolog att få ha både tak över huvudet och skydd mot vinden. Det hör inte till vanligheterna.

4 husbåten som flytande plattform 202005

Flytande forskning. Notera vassbältet i bakgrunden.

Genom att det är en husbåt kan den flyttas till en annan lokal för att undersöka hur det fungerar på en annan bottentyp. Det finns också goda möjligheter att undersöka hur metangasproduktionen förändras under olika årstider.

2 bubblor från sedimentet

Vad är det som bubblar upp här? Luktar det prutt är det svavelväte…men det kan också vara metangas…

Det är inte alltid som bubblorna som stiger upp ur vattnet består av växthusgaser. Under den varma perioden på året kan istället primärproduktionen av fintrådiga alger och tång tillsammans med rotade vattenväxter dominera vad som produceras. Då är det istället ett överskott av syre som bildas vid primärproduktionen och som bubblorna som stiger till ytan innehåller.

OLYMPUS DIGITAL CAMERA

Den gröna tarmalgen Ulva intestinalis, visar tydligt hur bubblor av syrgas kan bildas en solig dag.

Mycket av koldioxiden som finns i vattnet binds in i både alger och rotade vattenväxter och lagras i vävnaden. En vanlig art i Östersjön, som har den största lagringskapaciteten är bladvass, Phragmites australis, med sina tjocka rotstockar. På bilden av husbåten syns ett vassbälte bakom husbåten där provtagningen av vattnet sker i denna studie. Men även andra fleråriga arter som blåstång och rödalgen kräkel, Furcellaria lumbricalis, lagar också in kol under längre perioder. Och ålgräs, Zostera marina, lagrar in stora mängder kol i sina rötter.

5 Vassrotstockar kol lagring 20200515

Vassens långa rötter. Den som undrar vad namnet kommer från behöver bara känna på rotspetsen. Aj!!

Stora vassbälten är en miljö där lagring av koldioxid kan ske samtidigt som metangas kan bildas och lämna vattnet och avges till luften/atmosfären. Resultaten från Florians forskning på Askölaboratoriet kommer att bidra till en ökad kunskap om dessa komplexa processer i grunda miljöer under olika årstider.

Read Full Post »

Den 15 januari hölls ytterligare ett seminarium i Baltic Breakfast serien. På seminariet presenterades en ny policy brief om framtida förändringar av pH i Egentliga Östersjön, Rigabukten och Bottenviken kopplat till utsläpp av koldioxid och klimatförändringar.

1 Policy brief om försurnig

De stora pH förändringarna under olika årstider i Östersjön liknar mer förändringarna i våra sjöar än i de salta haven. Näringsrika sjöar på leriga jordar i södra och mellersta Sverige, omgivna av jordbruksmark, har högre pH värden på sommaren när produktionen hos rotade vattenväxter och algblomningar är stora. Under hösten när det organiska materialet långsamt bryts ner sjunker pH igen i sjön. De näringsfattiga sjöarna, i t.ex. norra Sverige, omgivna av skogsmarker som tillför mycket humusrikt vatten, har låga pH värden runt 5.6- 6.0. Här är produktionen av växter och alger liten och varierar mer beroende på tillrinnande vatten från omgivande marker.  Arter i sjöar som slås ut vid låga pH-värden är flodkräftan, som behöver ett pH-värde på över 6.0 och samma sak för många av våra sötvattenssnäckor, som behöver kalk för att bygga sina skal.

Detta är motsatsen till Nordatlanten, där buffringskapaciteten är hög och pH ligger runt ca 8.2. I denna stabila salta miljö har många arter av växtplankton med kalkskal haft årmiljoner på sig för att utvecklas. Men när mer och mer koldioxid löser sig i havsvattnet sjunker pH långsamt även i dessa vatten. Och även om vi tycker att vattnet är salt i Kattegatt, så avslöjar pH variationen på mellan 8.06-8.42 att redan här finns en påverkan av mer produktion och större variation under året.

2 .pH och näringsämnen, produktion_

Så vad händer i Egentliga Östersjöns och de andra stora bassängerna med pH?  I det öppna havet varierar pH t.ex. utanför Gotland mellan ca 7.9 – 8.6 under året. I Rigabukten, som inte bara påverkas av en mer lättvittrad berggrund utan minst lika mycket av tillförseln av mycket fosfor och kväve från omgivande marker,  varierar pH mellan 8 – 8,7 under året. Orsaken till ökningen under sommaren beror på hög produktion av alger och bottenvegetation som höjer pH, och när biomassan sedan bryts ner förbrukar den syre, koldioxid frigörs och pH sjunker igen. I en grund vik med mycket alger eller i ett tätt blåstångsbälte kan pH bli ännu högre (9-10) under en solig, lugn dag. Under kvällen och natten sjunker pH igen till ca. 8.  Så dramatiska förändringar sker inte bara under olika årstider utan även under dygnet.

Det betyder att alla de små djur med kalkskal som sitter på tången, t.ex. havstulpaner, blåmusslor och många snäckor som inte kan simma sin väg klarar av att överleva och tillväxa här. Den arten som inte kan leva i tångruskan inne i Egentliga Östersjön är strandsnäckan (Littorina littoralis) men det beror igen på att salthalten är för låg.

Picture2Picture1

I figuren till vänster finns strandsnäckan till vänster under tångräkan och två arter av trubbig strandsnäcka som inte heller överlever i Egentliga Östersjöns låga salthalt.  I figuren till höger finns sötvattensarterna av snäckor, och de marina arterna blåmusslor och havstulpaner.

Det havsområde som mest liknar våra sjöar är Bottenviken. Här varierar pH mellan ca 7.75-8 på sommaren. Vattnet från de stora älvarna är relativt fattigt på närsalter men kan periodvis vara rikt på humusämnen. Bottenvikens vatten är ganska näringsfattigt och produktionen därför låg, utom möjligen i någon lokalt påverkad vik med högre närsaltstillförsel. Så hur är det med arter som behöver kalk till sina skal här?  I Bottenviken är salthalten för låg för många av de marina arterna, t.ex. blåmusslor, östersjömussla och havstulpaner. Däremot finns sötvattenssnäckorna kvar, som båtsnäcka och dammsnäckor. De växer t.o.m. bättre eftersom de är sötvattensarter som blir stressade av att leva vid högre salthalter. Vill du veta mer lyssna på de inspelade presentationerna av Monika Winder, från institutionen för ekologi, miljö och botanik och Erik Gustafsson, Stockholms universitets Östersjöcentrum.

 

Read Full Post »